
  

1 
 

Time Series Trading Strategies Based on Almost Stochastic 

Dominances 

 

Jen-Wei Yang1 

Department of Economics, Soochow University, Taiwan 

 

Hsuan-Ling Chang2  

Department of Banking and Finance, Tamkang University, Taiwan 

 

Tzu-Hsuan, Kuo3 

College of Management, National Taipei University of Technology, Taiwan 

 

 

Abstract  

This study investigates the application of almost stochastic dominance time-series trading strategies 

for cryptocurrency, specifically using 5-minute BTC returns. We propose a novel approach that 

compares current and past returns to determine investor preferences and inform trading positions. Our 

empirical analysis reveals that almost second-order stochastic dominance (ASSD) consistently 

outperforms other strategies, including buy-and-hold (BH), first-order stochastic dominance (FSD), 

and second-order stochastic dominance (SSD), across various time frequencies. These findings 

indicate that ASSD effectively captures investor behavior and preferences in the cryptocurrency 

market. Additionally, the strategies demonstrate varying performance in bull and bear markets, with 

SSD and ASSD offering better risk-adjusted returns during downturns. This research contributes to 

the stochastic dominance literature by highlighting the practical applications of ASD in time-series 

analysis and suggests new avenues for future research in investment strategy development. 

 

Keyword: Almost Stochastic Dominances, Time series trading strategies, Cryptocurrency  

  

                                            
1 Corresponding Author; E-mail: jw@scu.edu.tw . 
2 Email: 157500@mail.tku.edu.tw. 
3 Email: shoeikml@gmail.com . 

mailto:jw@scu.edu.tw
mailto:157500@mail.tku.edu.tw
mailto:shoeikml@gmail.com


  

2 
 

1. Introduction 

Stochastic dominance (SD), as developed by Hadar and Russell (1969), Hanoch and Levy 

(1969), Rothschild and Stiglitz (1970) and Whitmore (1970), is a decision-making framework for 

comparing two probability distributions to determine which is preferable, without relying on any 

specific investor preferences. However, SD criteria can sometimes fail to identify dominance, even 

when most reasonable decision-makers would clearly favor one investment over another. To address 

the limitations of SD, almost stochastic dominance (ASD) was introduced by Leshno and Levy (2002) 

and later refined by Levy (2012), Tzeng et al. (2013), Tsetlin et al. (2015) and Chang et al. (2019). 

ASD establishes dominance for all reasonable preferences while excluding extreme or pathological 

cases. 

Numerous studies have explored applications of SD or ASD criteria. Post (2003) provided an 

empirical method for testing the SD efficiency of a given portfolio against all possible portfolios 

constructed from a set of assets, showing that the Fama and French market portfolio is significantly 

inefficient compared to benchmark portfolios based on market capitalization and book-to-market 

equity ratios. Regarding the common investment strategy of reallocating funds from stocks to bonds 

as investors age, Bali et al. (2009) demonstrated that the ASD criterion clearly supports advising a 

higher stock-to-bond ratio for long investment horizons. In stock index comparisons, Al-Khazali et 

al. (2014) used the SD criterion to investigate whether the Dow Jones Islamic indices outperform 

their conventional counterparts,4 concluding that Islamic indices did outperform s during 2007–2012 

global financial crisis. For the diversification role of gold in stock portfolios, Alkhazali and Zoubi 

(2020) employed the SD criterion to show that a gold-Islamic stock portfolio stochastically dominates 

one without gold across all Islamic stock indices. In comparing hedge funds, Bali et al. (2013) utilized 

the ASD criterion to assess whether hedge funds dominate the U.S. equity and bond markets, finding 

that long/short equity hedge and emerging markets hedge fund strategies outperform the U.S. equity 

                                            
4 Dow Jones conventional counterparts: Asia Pacific, Canadian, Developed Country, Emerging Markets, European, 

Global, Japanese, UK, and US indexes.  
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market, while long/short equity hedge, multistate, managed futures, and global macro hedge fund 

strategies dominate the U.S. Treasury market. More recently, Han et al. (2024) constructed 29 long–

short cryptocurrency risk factor portfolios, as compiled by Liu et al. (2022) and Feng et al. (2020), 

and compared them with four benchmarks—S&P 500 Index, T-Bond, Bitcoin, and T-Bill—using the 

ASD criterion. They found that eight of the 29 portfolios could not dominate the four benchmarks. In 

the realm of abnormal returns in the stock market, Clark and Kassimatis (2014) generated abnormal 

returns using SD criterion, while Chiang et al. (2024) used ASD criterion. These abnormal returns 

demonstrate statistically and economically significant results when tested against alternative common 

risk factors.  

Previous studies have primarily focused on using SD or ASD criterion to compare the return 

distributions of multiple assets or portfolios over the same period. In contrast, this paper introduces a 

novel approach by applying SD and ASD criteria to compare the return distributions of a single asset 

across two distinct time periods, thereby developing time-series-based investment strategies. The core 

concept of these time-series-based investment strategies by SD and ASD criteria is as follows: when 

comparing the current period returns of an asset with its past period returns, if the distribution of 

current period returns stochastically dominates that of past period returns, it indicates that investors 

prefer the current period returns over the past period returns. This preference is likely to increase (or 

decrease) demand for the asset, thereby driving its price up (or down), ceteris paribus. In accordance 

with this concept, we establish a long (or short) position in this asset for the subsequent period. 

Consequently, we establish a long (short) position in this asset for the next period. Conversely, when 

the distribution of current period returns does not stochastically dominate that of past period returns, 

and the distribution of past period returns does not stochastically dominate that of current returns, it 

suggests that investors cannot decisively compare the current and past returns. This indecision leads 

them to maintain their existing positions in the subsequent period.  

We selected Bitcoin as the primary subject analysis for the SD and ASD time series strategies. 

Unlike traditional financial assets, Bitcoin's price is not backed by gold or any intrinsic value; instead, 
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it relies solely on supply and demand. Since Bitcoin’s supply is fixed, with a maximum limit of 21 

million coins5, its price movements are primarily driven by changes in demand. When investors 

anticipate that the price of Bitcoin will rise, they are more likely to buy and hold it, which increases 

demand and pushes the price higher. Conversely, if they expect the price to fall, they may sell Bitcoin, 

increasing market supply and driving the price down. Chen (2021) Chen (2021) verified that investor 

expectations are one of the primary factors affecting Bitcoin’s price. The notion that Bitcoin's price 

is derived from investors' behavior based on their expectations aligns with the concept of our SD and 

ASD time series strategies, which captures how investors make decisions according to their 

preferences. Therefore, we have chosen Bitcoin as the focus of our analysis. 

In the empirical analysis, we collect the 5-minute BTC returns from the Binance website6 and 

compare the performance of five time series strategies: buy-and-hold (BH) strategy, first-order 

stochastic dominance (FSD) strategy, almost first-order stochastic dominance (AFSD) strategy, 

second-order stochastic dominance (SSD) strategy, and almost second-order stochastic dominance 

(ASSD) strategy. The empirical results indicate that, across all time frequencies (daily, weekly, 

monthly, quarterly, and yearly), the ASSD strategy exhibits the best performance regarding average 

excess returns and Sharpe ratios. Furthermore, the ASSD strategy outperforms the SSD strategy, 

while the AFSD strategy surpasses the FSD strategy in terms of average excess returns and Sharpe 

ratios. These findings suggest that the reasonable preferences underlying the ASD strategies align 

more closely with those of investors in the BTC market. Lastly, these strategies perform differently 

in bull and bear markets. While the BH strategy demonstrates strong returns in bull markets, it lacks 

resilience during bear markets. In contrast, the SSD and ASSD strategies offer better risk-adjusted 

returns, particularly in challenging bear market conditions. 

                                            
5 Bitcoin's open-source code was first released by Nakamoto (2008) and made available on GitHub and other version 

control platforms. The key rule regarding Bitcoin's supply cap is embedded in the block reward algorithm, which reduces 

the mining reward by half every 210,000 blocks, until the total supply reaches 21 million. 
6 Binance is one of the largest cryptocurrency exchanges in the world, founded in 2017. Known for its extensive range 

of crypto services, Binance provides spot trading, futures trading, staking, and decentralized finance (DeFi) products. 

https://www.binance.com/zh-TC 

https://www.binance.com/zh-TC
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The remainder of the present study is structured as follows: Section 2 reviews ASD and develops 

ASD time series strategies; Section 3 provides an empirical example of ASD time series strategies on 

BTC; and Section 4 presents conclusions. The mathematical derivations are presented in the 

Appendix. 

 

2. Time series strategies based on almost stochastic dominances 

We first define the time series SDs and ASDs in section 2.1, and then develop their trading rules 

in section 2.2. 

2.1. Time series of (almost) stochastic dominances 

𝑡  denotes point in time, and 𝑟𝑡 ≡ (𝑦𝑡 − 𝑦𝑡−1) 𝑦𝑡−1⁄   denotes one period return of an asset 

earned during time period [𝑡 − 1, 𝑡], where 𝑦𝑡 is its price at time 𝑡. The entire returns are divided 

into subsamples, and 𝑹𝑡  represents the subsample return vector at time 𝑡  collecting previous 𝑛 

returns in sequence: 𝑹𝑡 ≡ (𝑟𝑡−(𝑛−1), 𝑟𝑡−(𝑛−2), 𝑟𝑡−(𝑛−3), … , 𝑟𝑡−2, 𝑟𝑡−1, 𝑟𝑡) . Let 𝑔 ∈ 𝐺  to be 

possible outcome of 𝑹𝑡 for all 𝑡, and 𝐷𝑡(𝑔) denotes the cumulative distribution of 𝑹𝑡.  

𝐷𝑡(𝑔) dominates 𝐷𝑡−𝑘(𝑔) by FSD if and only if 𝐷𝑡(𝑔) ≤ 𝐷𝑡−𝑘(𝑔)) for all 𝑔 ∈ 𝐺 (with at 

least one strict inequality). AFSD of 𝐷𝑡(𝑔) over 𝐷𝑡−𝑘(𝑔) means that 𝐷𝑡(𝑔) ≤ 𝐷𝑡−𝑘(𝑔)) for most 

of the range 𝐺, except for a relatively small segment that “violates” the dominance. 𝐺𝐹 (𝑡, 𝑡 − 𝑘) ≡

{𝑔: 𝐷𝑡(𝑔) > 𝐷𝑡−𝑘(𝑔)} denotes the range over which FSD is violated at time 𝑡, and 𝐺̅𝐹 (𝑡, 𝑡 − 𝑘) ≡

{𝑔: 𝐷𝑡(𝑔) ≤ 𝐷𝑡−𝑘(𝑔))} denotes the complement area of 𝐺. That is, 𝐺𝐹 (𝑡, 𝑡 − 𝑘) ∪ 𝐺̅𝐹 (𝑡, 𝑡 − 𝑘) =

𝐺. 𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘) is violation ratio defined as the cumulative distribution of 𝐺𝐹 (𝑡, 𝑡 − 𝑘) over that 

of 𝐺:  

𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘) ≡

∫ (𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔))𝑑𝑔
𝐺𝐹 (𝑡,𝑡−𝑘)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

. (1) 

 

Definition 1 𝐷𝑡(𝑔)  is said to dominate 𝐷𝑡−𝑘(𝑔)  by 𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘) -AFSD at time 𝑡  when 
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𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘) < 𝑎 , where 0 ≤ 𝑎 ≤ 1  is predetermined allowance violation ratio. The smaller 

𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘), the stronger this dominance. 

 

Leshno and Levy (2002) prove that if 𝐷𝑡(𝑔) dominates 𝐷𝑡−𝑘(𝑔) by 𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘)-AFSD, then 

the expected value of 𝑹𝑡  is greater or equal to that of 𝑹𝑡−𝑘  for a class of preferences 𝑢 ∈

𝑈𝐹
∗(𝑣𝑡

𝐹(𝑡, 𝑡 − 𝑘)) , where 𝑈𝐹
∗(𝑣𝑡

𝐹(𝑡, 𝑡 − 𝑘))  is the set of all “well-behaved” or “reasonable” non-

decreasing utility functions, given by:  

𝑈𝐹
∗(𝑣𝑡

𝐹(𝑡, 𝑡 − 𝑘)) = {𝑢: 𝑢′(𝑥) > 0, 𝑢′(𝑥) ≤ inf{𝑢′(𝑥)} [
1

𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘)

] ∀𝑥 ∈ 𝐺}. 

 

[Insert Table 1 here] 

 

Table 1 gives an example to generate a time series of AFSD through the returns, subsample 

return vector, cumulative distribution, and violation ratios for the case: 𝑛 = 3 and 𝑘 = 2. At time 

𝑡 , we collect subsample return vectors 𝑹𝑡 = (𝑟𝑡−2, 𝑟𝑡−1, 𝑟𝑡)  and 𝑹𝑡−2 = (𝑟𝑡−4, 𝑟𝑡−3, 𝑟𝑡−2) , 

calculate their cumulative distributions 𝐷𝑡(𝑔)  and 𝐷𝑡−2(𝑔) , respectively, and then we calculate 

violation ratio 𝑣𝑡
𝐹(𝑡, 𝑡 − 2) for AFD through Eq. ( 1). When 𝑣𝑡

𝐹(𝑡, 𝑡 − 2) < 𝑎, 𝐷𝑡(𝑔) dominates 

𝐷𝑡−2(𝑔)  by 𝑣𝑡
𝐹(𝑡, 𝑡 − 2) -AFSD, implying that the all investors with utility 𝑈𝐹

∗(𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘)) 

prefer 𝐷𝑡(𝑔) to 𝐷𝑡−2(𝑔). Similarly, we can calculate 𝑣𝑡+1
𝐹 (𝑡 + 1, 𝑡 − 1) [𝑣𝑡+2

𝐹 (𝑡 + 2, 𝑡)] at time 

𝑡 + 1 [𝑡 + 2]  by collecting 𝑹𝑡+1 = (𝑟𝑡−1, 𝑟𝑡, 𝑟𝑡+1) and 𝑹𝑡−1 = (𝑟𝑡−3, 𝑟𝑡−2, 𝑟𝑡−1)  [𝑹𝑡+2 = (𝑟𝑡,

𝑟𝑡+1, 𝑟𝑡+2)  and 𝑹𝑡 = (𝑟𝑡−2, 𝑟𝑡−1, 𝑟𝑡) ] and determine the AFSD between 𝐷𝑡+1(𝑔)  and 𝐷𝑡−1(𝑔) 

[𝐷𝑡+2(𝑔) and 𝐷𝑡(𝑔)]. By analogy, we can generate a time series of AFSD decisions, determining at 

each time 𝑡  whether 𝐷𝑡(𝑔)  dominating 𝐷𝑡−2(𝑔)  for the all investors with utility 𝑈𝐹
∗(𝑣𝑡

𝐹(𝑡, 𝑡 −

2)). 

 

Property 1 𝐷𝑡(𝑔)  is said to FSD dominates 𝐷𝑡−𝑘(𝑔)  at time 𝑡  for 𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘) = 𝑎 = 0 , and  
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𝑈𝐹
∗ (𝑣𝑡

𝐹(𝑡, 𝑡 − 𝑘)) coincides with the usual set of all non-decreasing utilities. In other words, AFSD 

reduces to the standard FSD criterion if there is no violation area at all.  

 

𝐷𝑡(𝑔) dominates 𝐷𝑡−𝑘(𝑔) by SSD if and only if 

∫ 𝐷𝑡(𝑥)𝑑𝑥
𝑔

−∞

≤ ∫ 𝐷𝑡−𝑘(𝑥)𝑑𝑥
𝑔

−∞

 

for all 𝑔 ∈ 𝐺. Assume that the inequality holds for most of the range 𝐺, but not for all of it. Denote 

the area of SSD violation by: 

𝐺𝑆 (𝑡, 𝑡 − 𝑘) ≡ {𝑔: 𝐷𝑡(𝑔) > 𝐷𝑡−𝑘(𝑔); ∫ 𝐷𝑡−𝑘(𝑥)𝑑𝑥
𝑔

−∞

≤ ∫ 𝐷𝑡(𝑥)𝑑𝑥
𝑔

−∞

 } 

and denote the complement area of 𝐺𝑆 (𝑡, 𝑡 − 𝑘)  by 𝐺̅𝑆 (𝑡, 𝑡 − 𝑘) . That is 𝐺𝑆 (𝑡, 𝑡 − 𝑘) ∪

𝐺̅𝑆 (𝑡, 𝑡 − 𝑘) = 𝐺. Define 𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘) as the ratio: 

𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘) ≡

∫ (𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔))𝑑𝑔
𝐺𝑆 (𝑡,𝑡−𝑘)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

. 

 

Definition 2 𝐷𝑡(𝑔) is said to dominate 𝐷𝑡−𝑘(𝑔) by  𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘)-ASSD if 𝑣𝑡

𝑆(𝑡, 𝑡 − 𝑘) < 𝑎. The 

smaller 𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘), the stronger this dominance. 

 

Leshno and Levy (2002) prove that 𝐷𝑡(𝑔)  dominating 𝐷𝑡−𝑘(𝑔)  by 𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘) -ASSD 

implies that the investors with preferences 𝑢 ∈ 𝑈𝑆
∗(𝑣𝑡

𝑆(𝑡, 𝑡 − 𝑘))  will prefer 𝐷𝑡(𝑔) , where 

𝑢 ∈ 𝑈𝑆
∗(𝑣𝑡

𝑆(𝑡, 𝑡 − 𝑘)) is the set of all non-negative and concave utility functions, given by:  

𝑈𝑆
∗(𝑣𝑡

𝑆(𝑡, 𝑡 − 𝑘)) = {𝑢: 𝑢′′(𝑥) ≤ inf{𝑢′′(𝑥)} [
1

𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘)

] ∀𝑥 ∈ 𝐺}. 

 

Property 2 𝐷𝑡(𝑔) is said to dominate 𝐷𝑡−𝑘(𝑔) by SSD at time 𝑡 for 𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘) = 𝑎 = 0, and  

𝑈𝑆
∗(𝑣𝑡

𝐹(𝑡, 𝑡 − 𝑘))  coincides with the usual set of all risk-averse utilities. In other words, ASSD 
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reduces to the standard SSD criterion if there is no violation area at all.  

  

Similar to the time series of AFSD decisions, we can also generate the time series of ASSD 

decisions, determining at each time 𝑡  whether 𝐷𝑡(𝑔)  dominating 𝐷𝑡−𝑘(𝑔)  for the all investors 

with utility 𝑈𝑆
∗(𝑣𝑡

𝑆(𝑡, 𝑡 − 𝑘))  through calculating 𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘)  and comparing it with 

predetermined allowance violation ratio 𝑎.  

 

2.2. Trading strategies 

For simplicity, 𝐺(𝑡, 𝑡 − 𝑘)  represents 𝐺𝐹 (𝑡, 𝑡 − 𝑘)  or 𝐺𝑆 (𝑡, 𝑡 − 𝑘) , 𝐺̅(𝑡, 𝑡 − 𝑘)  represents 

𝐺̅𝐹 (𝑡, 𝑡 − 𝑘)  or 𝐺̅𝑆 (𝑡, 𝑡 − 𝑘) , and then 𝐺 = 𝐺(𝑡, 𝑡 − 𝑘) ∪ 𝐺̅(𝑡, 𝑡 − 𝑘)  represents 𝐺𝐹 (𝑡, 𝑡 − 𝑘) ∪

𝐺̅𝐹 (𝑡, 𝑡 − 𝑘)  or 𝐺𝑆 (𝑡, 𝑡 − 𝑘) ∪ 𝐺̅𝑆 (𝑡, 𝑡 − 𝑘) . Furthermore, 𝑣𝑡 (𝑡, 𝑡 − 𝑘)  denoting 𝑣𝑡
𝐹(𝑡, 𝑡 − 𝑘) 

or 𝑣𝑡
𝑆(𝑡, 𝑡 − 𝑘) can be written as 

𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≡
∫ (𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔))𝑑𝑔

𝐺(𝑡,𝑡−𝑘)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

. ( 1 ) 

Furthermore, 𝑈∗ (𝑣𝑡 (𝑡, 𝑡 − 𝑘)) denotes 𝑈𝐹
∗(𝑣𝑡

𝐹(𝑡, 𝑡 − 𝑘)) or 𝑈𝑆
∗(𝑣𝑡

𝑆(𝑡, 𝑡 − 𝑘)).  

 

2.2.1. ASD trading strategies 

Before formally defining the trading rules of ASD strategies, we first provide a useful 

proposition as follows. 

 

Proposition 1 Given an allowance violation ratio 0 < 𝑎 < 1, we have the following properties.  

(i). For 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 𝑎 , 𝐷𝑡(𝑔)  dominates 𝐷𝑡−𝑘(𝑔)  by 𝑣𝑡 (𝑡, 𝑡 − 𝑘) -ASD, and the smaller 

𝑣𝑡 (𝑡, 𝑡 − 𝑘), the stronger this dominance.  

(ii). For 𝑣𝑡 (𝑡, 𝑡 − 𝑘) > 1 − 𝑎, 𝐷𝑡−𝑘(𝑔) dominates 𝐷𝑡(𝑔) by 𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD, and the larger 

𝑣𝑡 (𝑡, 𝑡 − 𝑘), the stronger this dominance.  
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(iii). For 𝑎 ≤ 𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≤ 1 − 𝑎 , 𝐷𝑡(𝑔)  [𝐷𝑡−𝑘(𝑔) ] does not dominate 𝐷𝑡−𝑘(𝑔)  [𝐷𝑡(𝑔) ] by 

𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD. 

Proof: Please see Appendix A. 

 

Given an allowance violation ratio 0 < 𝑎 < 1, while the time series of AFSD or ASSD only 

determine at each time 𝑡  whether 𝐷𝑡(𝑔)  dominating 𝐷𝑡−𝑘(𝑔)  by comparing 𝑣𝑡 (𝑡, 𝑡 − 𝑘) 

and 𝑎 , Proposition 1 enables us to determine at each time 𝑡  both whether 𝐷𝑡(𝑔)  dominating 

𝐷𝑡−𝑘(𝑔) and whether 𝐷𝑡−𝑘(𝑔) dominating 𝐷𝑡(𝑔). This property help us to develop the following 

trading rules of ASD strategies.  

 

ASD trading rules 𝑃𝑡 (𝑎) denotes the position on the asset at time 𝑡 given an allowance violation 

ratio 𝑎, and the ASD trading rules are constructed as follows.  

(i). If 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 𝑎, 𝑃𝑡+1(𝑎) = 1. 

According to (i) of Proposition 1, 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 𝑎 indicates that 𝐷𝑡(𝑔) dominates 𝐷𝑡−𝑘(𝑔) 

by 𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD, i.e., the utilities on the 𝑹𝑡 are greater than those on the 𝑹𝑡−𝑘 for all the 

investors with 𝑈∗ (𝑣𝑡 (𝑡, 𝑡 − 𝑘)) . This leads to an increase in demand for this asset, and 

consequently, its price will rise, ceteris paribus. Thus, we establish one long positions on this 

asset at time 𝑡 + 1. 

(ii). If 𝑣𝑡 (𝑡, 𝑡 − 𝑘) > 𝑎, 𝑃𝑡+1(𝑎) = −1. 

According to (ii) of Proposition 1, 𝑣𝑡 (𝑡, 𝑡 − 𝑘) > 𝑎  indicates that 𝐷𝑡(𝑔)  dominates 

𝐷𝑡−𝑘(𝑔) by 𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD, i.e., the utilities on the 𝑹𝑡 are smaller than those on the 𝑹𝑡−𝑘 

for all the investors with 𝑈∗ (𝑣𝑡 (𝑡, 𝑡 − 𝑘)). This leads to an decrease in demand for this asset, 

and consequently, its price will fall, ceteris paribus. Thus, we establish one short position on this 

asset at time 𝑡 + 1. 
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(iii). If 𝑎 ≤ 𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≤ 1 − 𝑎 , 𝑃𝑡+1(𝑎) = 1  when 𝑃𝑡 (𝑎) = 1   𝑃𝑡+1(𝑎) = 0  when 𝑃𝑡 (𝑎) =

0  𝑃𝑡+1(𝑎) = −1 when 𝑃𝑡 (𝑎) = −1. 

The situation, 𝑎 ≤ 𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≤ 1 − 𝑎 , implies that there is no 𝑣𝑡 (𝑡, 𝑡 − 𝑘) -ASD 

between 𝐷𝑡(𝑔) and 𝐷𝑡−𝑘(𝑔), i.e., all the investors with 𝑈∗ (𝑣𝑡 (𝑡, 𝑡 − 𝑘)) cannot determine 

whether 𝑹𝑡 or 𝑹𝑡−𝑘 provides them higher utility, so maintain the previous position.  

 

[Insert Figure 1 here] 

 

In Figure 1, we provides an example of determining position 𝑃𝑡 (𝑎) through the violation ratio 

𝑣𝑡 (𝑡, 𝑡 − 𝑘) and a predetermined allowance violation ratio 𝑎 based on ASD trading rules (i), (ii), 

and (iii). In this example, the assumed violation ratios are shown in the top figure, while the 

corresponding positions are displayed in the bottom figure. We also assume that 𝑃0 (𝑎) = 0.  

At 𝑡 = 1 and 2, we can observe that 𝑣1 (1, 1 − 𝑘) and 𝑣2 (2, 2 − 𝑘) are both smaller than 

𝑎, and thus we have 𝑃2 (𝑎) = 𝑃3 (𝑎) = 1 based on ASD trading rule (i). At 𝑡 = 3, because 𝑎 ≤

𝑣3 (3, 3 − 𝑘) ≤ 1 − 𝑎 and 𝑃3 (𝑎) = 1, ASD trading rule (iii) indicates that 𝑃4 (𝑎) = 1. Similarly, 

at 𝑡 = 4, because 𝑎 ≤ 𝑣4 (4, 4 − 𝑘) ≤ 1 − 𝑎 and 𝑃4 (𝑎) = 1, ASD trading rule (iii) also indicates 

that 𝑃5 (𝑎) = 1 . Next, 𝑣5 (5, 5 − 𝑘)  and 𝑣6 (6, 6 − 𝑘)  are both larger than (1 − 𝑎) , so ASD  

trading rule (ii) generates 𝑃6 (𝑎) = 𝑃7 (𝑎) = −1. 

Furthermore, because 𝑎 ≤ 𝑣7 (7, 7 − 𝑘) ≤ 1 − 𝑎  and 𝑃7 (𝑎) = −1 , ASD trading rule (iii) 

generates 𝑃8 (𝑎) = −1 , and similarly, because 𝑎 ≤ 𝑣8 (8, 8 − 𝑘) ≤ 1 − 𝑎  and 𝑃8 (𝑎) = −1 , 

ASD trading rule (iii) also generates 𝑃9 (𝑎) = −1 . At 𝑡 = 9  and 10,  both  𝑣9 (9, 9 − 𝑘)  and 

𝑣10(10, 10 − 𝑘) are smaller than 𝑎, and thus 𝑃10(𝑎) = 𝑃11(𝑎) = 1 based on ASD trading rule (i). 

Because 𝑃11(𝑎) = 1 and both 𝑣11(11, 11 − 𝑘) and 𝑣12(12, 12 − 𝑘) are between 𝑎 and 1 − 𝑎, 

𝑃12(𝑎) = 𝑃13(𝑎) = −1 based on ASD trading rule (iii). Final, according to ASD trading rule (ii), 
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𝑃14(𝑎) = 1 because 𝑣13(13, 13 − 𝑘) > 1 − 𝑎. 

 

2.2.2. Trading rules of SD strategies  

When 𝑎 = 0 , Property 1 and Property 2 indicate that 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 0  implies 𝐷𝑡(𝑔) 

dominates 𝐷𝑡−𝑘(𝑔) by SD. Similar to the time series of ASD, the time series of SD only determine 

at each time 𝑡  whether 𝐷𝑡(𝑔)  dominates 𝐷𝑡−𝑘(𝑔)  but cannot confirm whether 𝐷𝑡−𝑘(𝑔)  

dominates 𝐷𝑡(𝑔). Proposition 2 addresses this issue. 

 

Proposition 2  Given 𝑎 = 0, we have the following properties. 

(i). For 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 0, 𝐷𝑡(𝑔) dominates 𝐷𝑡−𝑘(𝑔) by SD. 

(ii). For 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 1, 𝐷𝑡−𝑘(𝑔) dominates 𝐷𝑡(𝑔) by SD. 

(iii). For 0 < 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 1, 𝐷𝑡(𝑔) [𝐷𝑡−𝑘(𝑔)] does not dominate 𝐷𝑡−𝑘(𝑔) [𝐷𝑡(𝑔)] by SD 

Proof: Please see Appendix B. 

 

Proposition 2 enables us to determine at each time 𝑡 both whether 𝐷𝑡(𝑔) dominates 𝐷𝑡−𝑘(𝑔) 

and whether 𝐷𝑡−𝑘(𝑔)  dominating 𝐷𝑡(𝑔)  by SD, and thus we have following SD trading rules 

(SDTRs). 

 

SD trading rules 𝑃𝑡 (0) denotes the position on the asset at time 𝑡, and the SD trading rules are 

constructed as follows. 

(i). If 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 0, 𝑃𝑡+1(0) = 1. 

According to (i) of Proposition 2, 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 0  indicates that 𝐷𝑡(𝑔)  dominates 

𝐷𝑡−𝑘(𝑔) by SD, i.e., the utilities on the 𝑹𝑡 are greater than those on the 𝑹𝑡−𝑘 for all non-

decreasing utility or all risk-averse investors. This leads to an increase in demand for this asset, 

and consequently, its price will rise, ceteris paribus. Thus, we establish one long positions on 
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this asset at time 𝑡 + 1.  

(ii). If 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 1, 𝑃𝑡+1(0) = −1. 

According to (ii) of Proposition 2, 𝑣𝑡 (𝑡, 𝑡 − 𝑘) = 1  indicates that 𝐷𝑡(𝑔)  dominates 

𝐷𝑡−𝑘(𝑔) by SD, i.e., the utilities on the 𝑹𝑡 are smaller than those on the 𝑹𝑡−𝑘 for all non-

decreasing utility or all risk-averse investors. This leads to an decrease in demand for this asset, 

and consequently, its price will fall, ceteris paribus. Thus, we establish one short position on this 

asset at time 𝑡 + 1. 

(iii). If 0 < 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 1 , 𝑃𝑡+1(0) = 1  when 𝑃𝑡 (0) = 1   𝑃𝑡+1(0) = 0  when 𝑃𝑡 (0) = 0   

𝑃𝑡+1(0) = −1 when 𝑃𝑡 (0) = −1. 

In this situation, there is no SD between 𝐷𝑡(𝑔)  and 𝐷𝑡−𝑘(𝑔) , i.e., all non-decreasing 

utility or all risk-averse investors cannot determine whether 𝑹𝑡 or 𝑹𝑡−𝑘 provides them higher 

utility, so maintain the previous position. 

 

[Insert Figure 2 here] 

 

In Figure 2, we provide an example of determining position 𝑃𝑡 (0) through the violation ratio 

𝑣𝑡 (𝑡, 𝑡 − 𝑘) based on SD trading rules (i), (ii), and (iii). In this example, the assumed violation ratios 

are shown in the top figure, while the corresponding positions are displayed in the bottom figure. We 

also assume that 𝑃0 (0) = 0.  

At 𝑡 = 1  and 2, since 𝑣1 (1, 1 − 𝑘)  and 𝑣2 (2, 2 − 𝑘)  are both equal to 0 , we have 

𝑃2 (0) = 𝑃3 (0) = 1 based on SD trading rule (i). At 𝑡 = 3 and 4, because 0 < 𝑣3 (3, 3 − 𝑘) < 1 

and 0 < 𝑣4 (4, 4 − 𝑘) < 1 and 𝑃3 (0) = 1, SD trading rule (iii) indicates that 𝑃4 (0) = 𝑃5 (0) =

1. Furthermore, At 𝑡 = 5 and 6, both 𝑣5 (5, 5 − 𝑘) and 𝑣6 (6, 6 − 𝑘) equal 1, so SD trading rule 

(ii) generates 𝑃6 (0) = 𝑃7 (0) = −1 . Because 0 < 𝑣7 (7, 7 − 𝑘) < 1 , SD trading rule (iii) 

generates 𝑃8 (0) = −1 , and similarly, because 0 < 𝑣8 (8, 8 − 𝑘) < 1 , SD trading rule (iii) also 
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generates 𝑃9 (0) = −1. At 𝑡 = 9 and 10, both 𝑣9 (9,9 − 𝑘) and 𝑣10(10, 10 − 𝑘) equal 0, and 

thus P10(0) = P11(0) = 1  based on SD trading rule (i). Because 𝑃11(0) = 1  and 0 <

𝑣11(11, 11 − 𝑘) < 1 and 0 < 𝑣12(12, 12 − 𝑘) < 1, 𝑃12(0) = 𝑃13(0) = −1 based on SD trading 

rule (iii). Final, according to SD trading rule (ii), 𝑃14(0) = 1 because 𝑣13(13, 13 − 𝑘) = 1. 

 

3. Empirical analyses 

This section demonstrates the applicability of the proposed SD and ASD time series strategies to 

BTC. We collect intraday 5-minute BTC returns from Binance and daily federal funds effective rates 

from the Federal Reserve Economic Data (FRED).7 To synchronize the data frequency between BTC 

prices and the federal funds effective rates, we assume the federal funds effective rates remain 

constant throughout the day, with the 5-minute rate being equal to the daily rate divided by 288. Table 

2 represents the descriptive statistics of 5-min BTC returns, the federal funds effective rates from 

January 1, 2018, 00:00:00 to December 1, 2023, 23:55:00, and the total size for 5-min BTC returns 

or federal funds effective rates is 631,008. First, the standard deviation for 5-min BTC reruns is 

2.41 × 10−3 , showing significant volatility, Second, the skewness of 5-min BTC returns is 6.04 ×

10−1, suggesting a positive skew, meaning that extreme positive returns are more common than 

extreme negative ones. Final, 5- min BTC returns have a kurtosis coefficient of 1.34 × 102 , 

indicating extreme leptokurtic behavior, with lots of sharp price movements. These statistical 

characteristics shows the difference of cryptocurrency market and financial market. 

 

[Insert Table 3 here] 

 

Next, we adopt five trading strategies on Bitcoin data: the buy-and-hold (BH) strategy, the FSD 

strategy, the AFSD strategy with 𝑎 = 0.06  [referred to as the AFSD (0.06) strategy], the SSD 

                                            
7 FRED: https://fred.stlouisfed.org/  

https://fred.stlouisfed.org/
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strategy, and the ASSD strategy with 𝑎 = 0.06  [referred to as the ASSD (0.06) strategy]. The 

predetermined allowance violation ratio 𝑎  is set as 0.06 for ASD strategies by following the 

experimentally estimate result of Levy et al. (2010). They find that if the violation ratio is smaller 

than this value, all subjects in their experiments selecting the ASD dominating investment. The latter 

studies such as Levy (2012) also follow this value for 𝑎. The subsample return vector 𝑹𝑡 collects 

previous 𝑛 5-min BTC returns in sequence, where 𝑛 is considered as 8640 (30 days) or 17280 (60 

days) in this study. By using these subsample return vectors, we calculate the violation ratio 

𝑣𝑡 (𝑡, 𝑡 − 𝑘) for SD and ASD strategies, where 𝑘 is set as 288 (1 days). 

 Let 𝑃𝑡 ∈ {𝑃𝑡
𝐵, 𝑃𝑡

𝐹(0), 𝑃𝑡
𝐹(0.06), 𝑃𝑡

𝑆(0), 𝑃𝑡
𝑆(0.06)} , where 𝑃𝑡

𝐵 , 𝑃𝑡
𝐹(0) , 𝑃𝑡

𝐹(0.06) , 𝑃𝑡
𝑆(0) , 

𝑃𝑡
𝐵(0.06) denotes the positions of the BH strategy, the FSD strategy, the AFSD (0.06) strategy, the 

SSD strategy, and the ASSD (0.06) strategy at time 𝑡 . The strategy excess return at time 𝑡  is 

calculated as 𝐸𝑅𝑡 = 𝑃𝑡−1 × 𝑟𝑡 − 𝑟𝑡
𝑓
, where 𝑟𝑡

𝑓
 is the federal funds effective rate at time 𝑡. The 

first violation ratios 𝑣𝑡 (𝑡, 𝑡 − 𝑘) of ASD strategies are established at December, 31, 2017, 23:50:00, 

and thus the first positions of these five strategies are established at December, 31, 2017, 23:55:00. 

Therefore, the excess returns of these five strategies are all established spanning from January 1, 

2018, 00:00:00 to December 1, 2023, 23:55:00. In other words, we set the total evaluation period 

consists of 631,008 time points.  

 

3.1. Periodic trading performance 

This section compares the performances of excess returns among these five strategies 

periodically (daily, weekly, monthly, quarterly and yearly), and the results are reported in Table 3. 𝑇 

represents the total evaluation period and is divided into 𝐽 sub-periods. The 𝑗th sub-period consists 

of 𝑇𝑗 time points, i.e., 𝑇 = ∑ 𝑇𝑗
𝐽
𝑗=1 . The periodic excess return for the 𝑗th sub-period is calculated 

as 

 𝑃𝐸𝑅𝑗 = ∏ (1 + 𝐸𝑅𝑖)
𝑇𝑗

𝑖=1
− 1. 
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The average value, standard deviation, and Sharpe ratio of 𝑷𝑬𝑹 = {𝑃𝐸𝑅𝑗 | 𝑗 = 1, 2, 3, … , 𝐽} are 

calculated by 

𝐴𝑉(𝑷𝑬𝑹) =
∑ 𝑃𝐸𝑅𝑗

𝐽
𝑗=1

𝐽
, 

𝑆𝐷(𝑷𝑬𝑹) = √
∑ (𝑃𝐸𝑅𝑗 − 𝐸𝑉(𝑷𝑬𝑹))

2
𝐽
𝑗=1

𝐽 − 1
, 

and 

𝑆𝑅(𝑷𝑬𝑹) =
𝐴𝑉(𝑷𝑬𝑹)

𝑆𝐷(𝑷𝑬𝑹)
.  

 

[Insert Table 3 here] 

 

Panel A and Panel B in Table 3 reports the results for the window size of subsample 𝑛 =8640 

(30 days) and 17280 (60 days), respectively. In the daily frequency, the ASSD (0.06) strategy 

consistently exhibits the best performance across both 30-day and 60-day windows, yielding the 

highest Sharpe ratios of 0.0406 and 0.0501, respectively. This indicates that the ASSD (0.06) strategy 

offers the most favorable risk-adjusted returns in the short-term horizon. In contrast, the FSD strategy 

performs the weakest, particularly in the 30-day window with negative excess returns and Sharpe 

ratios, indicating unfavorable performance. The AFSD (0.06) strategy, while improving slightly in 

the 60-day window, underperforms compared to both the BH and SSD strategies. For weekly 

frequency, the ASSD (0.06) strategy once again demonstrates superior performance with the highest 

Sharpe ratios (0.1088 and 0.1346) across both 30-day and 60-day windows. The SSD strategy 

performs well regarding risk-adjusted returns but falls behind the ASSD (0.06) strategy. The BH 

strategy consistently remains in the middle range, while the FSD strategy underperforms in the 30-

day window but shows improvement in the 60-day window. 

In monthly observations, the ASSD (0.06) strategy continues to outperform, achieving the highest 
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excess return and Sharpe ratio in both periods. The BH strategy follows closely but falls short in terms 

of risk-adjusted returns. The FSD strategy, which is notably the weakest in the 30-day window, 

improves significantly in the 60-day period, reflecting a pattern of better performance with longer 

holding periods. The AFSD (0.06) strategy shows improvement over the FSD, yet it remains behind 

the SSD and ASSD (0.06) strategies. The quarterly performance results align with earlier patterns, 

where the ASSD strategy leads with the highest Sharpe ratios (0.3741 and 0.4345). Interestingly, the 

FSD strategy underperforms in both time frames, indicating that this strategy is less suitable for 

longer-term periods. The SSD strategy, while showing decent returns, is overshadowed by the ASSD 

(0.06) strategy's consistently higher risk-adjusted performance. In the yearly horizon, the ASSD 

(0.06) strategy again ranks the highest with the best Sharpe ratios, confirming its dominance across 

all time frequencies. The FSD strategy, while underperforming at shorter time horizons, shows 

significant improvement with longer evaluation periods. However, it is still outperformed by the 

ASSD (0.06) and AFSD (0.06) strategies. The BH strategy remains competitive, but it cannot match 

the higher risk-adjusted returns of the ASSD (0.06) strategy. 

Additionally, across all time frequencies (daily, weekly, monthly, quarterly, and yearly), the 

ASSD (0.06) strategy outperforms the SSD strategy while the AFSD (0.06) strategy outperforms the 

FSD strategy in terms of excess returns and Sharpe ratios. This result seems to reflect that ASD, 

considering all reasonable preferences, excluding extreme or pathological cases, are more consistent 

with investor choices in BTC market.  

 

3.2. Trading performance during bull and bear markets 

Following the bull/bear market definition in Lunde and Timmermann (2004), we set the 

threshold filter, (𝜆1, 𝜆2) = (20, 20)8, to find out the period of the bull and bear markets. Then, we 

divided the entire evaluation period into 5 bull market periods and 5 bear market periods, respectively. 

                                            
8 The threshold filter setting is the same as that used by Zhang et al. (2020) to distinguish the bull and bear periods in the 

cryptocurrency market. 
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The detail periods for each bull or bear market are listed in Table 4.  

𝐽𝐵𝑢𝑙𝑙  (𝐽𝐵𝑒𝑎𝑟 ) denotes the numbers of the bull (bear) market periods, and  𝑇𝑗
𝐵𝑢𝑙𝑙  (𝑇𝑗

𝐵𝑒𝑎𝑟 ) 

denotes the numbers of 5-min excess returns generated by each strategy in 𝑗th bull (bear) market 

periods. Thus, 𝑇 = ∑ 𝑇𝑗
𝐵𝑢𝑙𝑙𝐽𝐵𝑢𝑙𝑙

𝑗=1 + ∑ 𝑇𝑗
𝐵𝑒𝑎𝑟𝐽𝐵𝑒𝑎𝑟

𝑗=1  . Let 𝑀 ∈ {𝐵𝑢𝑙𝑙, 𝐵𝑒𝑎𝑟} , and 𝑗 th period excess 

return in bull or bear market is calculated as 

𝑃𝐸𝑅𝑗 = ∏ (1 + 𝐸𝑅𝑖)
𝑇𝑗

𝑀

𝑖=1
− 1. 

The annualized period excess return for 𝑃𝐸𝑅𝑗  is calculated as  

𝐴𝐸𝑅𝑗 = (1 + 𝑃𝐸𝑅𝑗 )

1

𝑌𝑗
𝑀

− 1, 

where 𝑌𝑗
𝑀 is the corresponding number of year for 𝑗th bull or bear market periods. The average 

value, standard deviation, and Sharpe ratio of 𝑨𝑬𝑹 = {𝐴𝐸𝑅𝑗 | 𝑗 = 1, 2, 3, … , 𝐽𝑀} are calculated 

by 

𝐴𝑉(𝑨𝑬𝑹) =
∑ 𝐴𝐸𝑅𝑗

𝐽𝑀

𝑗=1

𝐽𝑀
, 

𝑆𝐷(𝑨𝑬𝑹) = √
∑ (𝐴𝐸𝑅𝑗 − 𝐸𝑉(𝑨𝑬𝑹))

2
𝐽𝑀

𝑗=1

𝐽𝑀 − 1
, 

and 

𝑆𝑅(𝑨𝑬𝑹) =
𝐴𝑉(𝑨𝑬𝑹)

𝑆𝐷(𝑨𝑬𝑹)
. 

 

[Insert Table 5 here] 

 

Panel A and Panel B in Table 5 reports the performance results during bull and bear markets 

and for the window size of subsample n=8640 (30 days) and 17280 (60 days), respectively. Regarding 

the bull market, the BH strategy consistently shows strong performance across both window sizes, 



  

18 
 

with an average annualized return of 3.7645 and a Sharpe ratio of 1.3383, indicating solid returns 

with moderate risk. FSD Strategy initially underperforms in the 30-day period with an average return 

of -0.2222 but recovers to 1.3570 in the 60-day period, achieving a Sharpe ratio of 0.7619, reflecting 

improved risk-adjusted performance when window size increases. AFSD (0.06) strategy 

demonstrates positive returns in both periods (1.8099 in 30 days and 2.3005 in 60 days), with 

increasing Sharpe ratios from 0.4287 to 0.5765, suggesting better relative performance as the when 

window size extends. SSD strategy shows weak performance in the 30-day period but improves in 

the 60-day period. ASSD (0.06) stands out in both window size with the highest average returns 

(1.1454 and 0.4312) and high Sharpe ratios, indicating strong performance relative to risk. 

Regarding bear market, BH strategy underperforms with negative returns (-0.7312) in both 

sample size and a very low Sharpe ratio (-4.8223 in 60 days), highlighting its vulnerability in bear 

markets. While still negative, FSD strategy returns improve from -0.0755 (30 days) to -0.1715 (60 

days), but Sharpe ratios remain low, indicating continued challenges in bear markets. AFSD (0.06) 

shows a notable decline in performance with average returns dropping significantly from -0.5206 to 

-2.4114, illustrating sensitivity to market conditions. Contrarily, the SSD strategy performs well in 

bear markets with positive average returns (0.7153 in 30 days and 1.2671 in 60 days) and increasing 

Sharpe ratios, suggesting effectiveness in downturns. ASSD (0.06) strategy excels in bear markets 

with the highest average returns across both periods (2.5268 and 1.2069) and strong Sharpe ratios, 

showcasing resilience and effective risk management. 

In summary, the 60-day window size case generally results in better performance metrics for 

most strategies, indicating that a longer window size can mitigate short-term volatility. Additionally, 

these strategies perform differently in bull and bear markets. While BH has strong returns in bull 

markets, it lacks resilience in bear markets. Conversely, SSD and ASSD strategies appear to offer 

better risk-adjusted returns, particularly in challenging bear market conditions. 

 

4. Conclusion 
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This study explores the application of SD and ASD to develop time-series trading strategies 

based on the comparative analysis of current and past returns of a single asset. Our empirical findings 

reveal that the ASSD strategy outperforms other strategies across various time frequencies, including 

FSD, AFSD, and SSD. This superior performance, particularly in terms of average excess returns and 

Sharpe ratios, underscores the relevance of the ASD framework in capturing the preferences of 

investors. Additionally, the ability of AFSD (ASSD) to consistently outperform FSD (SSD) suggests 

that incorporating ASD can yield significant insights into market dynamics and investor behavior, 

particularly in a volatile asset class like cryptocurrency. 

Moreover, the differentiated performance of the strategies in bull and bear markets highlights the 

importance of tailoring investment approaches to prevailing market conditions. While the buy-and-

hold (BH) strategy may thrive in upward trends, it lacks resilience in downturns. Conversely, the SSD 

and ASSD strategies demonstrate better risk-adjusted returns, making them more suitable for 

investors navigating turbulent market environments. 

Overall, this study contributes to the existing literature on SD and ASD and opens new avenues 

for research by demonstrating the applicability of SD and ASD in time-series contexts. Future 

research could further refine these strategies or explore their applicability across other asset classes, 

enhancing our understanding of investor preferences and market behavior. By integrating advanced 

decision-making frameworks like ASD, investors can potentially make more informed and strategic 

decisions, ultimately improving investment outcomes in an increasingly complex financial landscape.  
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Appendix 

Appendix A 

 This appendix derives Proposition 1. (i) of Proposition 1 summarizes Definition 1 and 

Definition 2. (ii) and (iii) of Proposition 1 are derived as follows.  

 Firstly, let us to derive that 𝑣𝑡 (𝑡, 𝑡 − 𝑘) + 𝑣𝑡 (𝑡 − 𝑘, 𝑡) = 1. Recalling Eq. ( 1 ) yields  

𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≡
∫ (𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔))𝑑𝑔

𝐺(𝑡,𝑡−𝑘)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

, 

which can be rewritten as 

𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≡
∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔

𝐺(𝑡,𝑡−𝑘)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

 

because 𝐷𝑛+1(𝑔) − 𝐷𝑛(𝑔) > 0 on 𝐺(𝑡, 𝑡 − 𝑘). Following the previous equation, we can calculate 

𝑣𝑡 (𝑡 − 𝑘, 𝑡) as 

𝑣𝑡 (𝑡 − 𝑘, 𝑡) =
∫ |𝐷𝑡−𝑘(𝑔) − 𝐷𝑡(𝑔)|𝑑𝑔

𝐺(𝑡−𝑘,𝑡)

∫ |𝐷𝑡−𝑘(𝑔) − 𝐷𝑡(𝑔)|𝑑𝑔
𝐺

=
∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔

𝐺(𝑡−𝑘,𝑡)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

. 

Because 𝐺 = 𝐺(𝑡, 𝑡 − 𝑘) ∪ 𝐺̅(𝑡, 𝑡 − 𝑘), the sum of the previous two equations is therefore  

𝑣𝑡 (𝑡, 𝑡 − 𝑘) + 𝑣𝑡 (𝑡 − 𝑘, 𝑡) 

=
∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔

𝐺(𝑡,𝑡−𝑘)
+ ∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔

𝐺(𝑡−𝑘,𝑡)

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

=
∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔

𝐺

∫ |𝐷𝑡(𝑔) − 𝐷𝑡−𝑘(𝑔)|𝑑𝑔
𝐺

= 1. 

Next, we prove (ii) of Proposition 1. 𝑣𝑡 (𝑡 − 𝑘, 𝑡) = 1 − 𝑣𝑡 (𝑡, 𝑡 − 𝑘) implies that 𝑣𝑡 (𝑡 −

𝑘, 𝑡) < 𝑎 is equivalent to 𝑣𝑡 (𝑡 − 𝑘, 𝑡) > 1 − 𝑎. Thus, the fact, “ 𝐷𝑡−𝑘(𝑔) dominates 𝐷𝑡(𝑔) by 

𝑣𝑡 (𝑡 − 𝑘, 𝑡)-ASD for 𝑣𝑡 (𝑡 − 𝑘, 𝑡) < 𝑎; the smaller 𝑣𝑡 (𝑡 − 𝑘, 𝑡), the stronger this dominance. ”, 

is equivalent to that  “ 𝐷𝑡−𝑘(𝑔) dominates 𝐷𝑡(𝑔) by 𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD for 𝑣𝑡 (𝑡, 𝑡 − 𝑘) > 1 −

𝑎; the larger 𝑣𝑡 (𝑡, 𝑡 − 𝑘), the stronger this dominance. ”. 

Final, we prove (iii) of Proposition 1. (i) of Proposition 1 implies that 𝐷𝑡(𝑔)  does not 

dominate 𝐷𝑡−𝑘(𝑔) by 𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD for 𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≥ 𝑎. Furthermore, (ii) of Proposition 1 
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implies that 𝐷𝑡−𝑘(𝑔)  does not dominate 𝐷𝑡(𝑔)  by 𝑣𝑡 (𝑡, 𝑡 − 𝑘) -ASD for 𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≤ 1 − 𝑎 

Thus, for 𝑎 ≤ 𝑣𝑡 (𝑡, 𝑡 − 𝑘) ≤ 1 − 𝑎 , 𝐷𝑡(𝑔)  [𝐷𝑡−𝑘(𝑔) ] does not dominate 𝐷𝑡−𝑘(𝑔)  [𝐷𝑡(𝑔) ] by 

𝑣𝑡 (𝑡, 𝑡 − 𝑘)-ASD. The proof is complete.  

 

Appendix B 

This appendix derives Proposition 2. Part (i) of Proposition 2 summarizes Property 1 and 

Property 2. Parts (ii) and (iii) of Proposition 2 are derived as follows.  

Applying 𝑣𝑡 (𝑡 − 𝑘, 𝑡) = 1 − 𝑣𝑡 (𝑡, 𝑡 − 𝑘)  derived in Appendix A, we have that 𝑣𝑡 (𝑡 −

𝑘, 𝑡) = 0  is equivalent to 𝑣𝑡 (𝑡 − 𝑘, 𝑡) = 1 . Thus, the fact, “ 𝐷𝑡−𝑘(𝑔)  dominates 𝐷𝑡(𝑔)  by SD 

when 𝑣𝑡 (𝑡 − 𝑘, 𝑡) = 0 “ is equivalent to that “  𝐷𝑡−𝑘(𝑔)  dominates 𝐷𝑡(𝑔)  by SD when 

𝑣𝑡 (𝑡 − 𝑘, 𝑡) = 1”. The proof of Parts (ii) is complete.  

Part (i) of Proposition 2 implies that 𝐷𝑡(𝑔)  does not dominate 𝐷𝑡−𝑘(𝑔)  by SD when 

𝑣𝑡 (𝑡, 𝑡 − 𝑘) > 0. Further, Part (ii) of Proposition 2 implies that 𝐷𝑡−𝑘(𝑔) does not dominate 𝐷𝑡(𝑔) 

by SD for 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 1 Thus, for 0 < 𝑣𝑡 (𝑡, 𝑡 − 𝑘) < 1, 𝐷𝑡(𝑔) [𝐷𝑡−𝑘(𝑔)] does not dominate 

𝐷𝑡−𝑘(𝑔) [𝐷𝑡(𝑔)] by SD. The proof of Part (iii) is complete.  
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Tables 

 

Table 1: Return, subsample return vector, cumulative distribution, and violation ratio for 

𝒏 = 𝟑 and 𝒌 = 𝟐. 

Time in point Subsample  

return vector 

Cumulative 

distribution 

Violation 

ratio 𝑡 − 4 𝑡 − 3 𝑡 − 2 𝑡 − 1 𝑡 𝑡 + 1 𝑡 + 2 

𝑟𝑡−4 𝑟𝑡−3 𝑟𝑡−2     𝑹𝑡−2 𝐷𝑡−2(𝑔) 
𝑣𝑡

𝐹(𝑡, 𝑡 − 2) 
  𝑟𝑡−2 𝑟𝑡−1 𝑟𝑡   𝑹𝑡 𝐷𝑡(𝑔) 

 𝑟𝑡−3 𝑟𝑡−2 𝑟𝑡−1    𝑹𝑡−1 𝐷𝑡−1(𝑔) 𝑣𝑡+1
𝐹 (𝑡 + 1, 𝑡

− 1)    𝑟𝑡−1 𝑟𝑡 𝑟𝑡+1  𝑹𝑡+1 𝐷𝑡+1(𝑔) 

  𝑟𝑡−2 𝑟𝑡−1 𝑟𝑡   𝑹𝑡 𝐷𝑡(𝑔) 
𝑣𝑡+2

𝐹 (𝑡 + 2, 𝑡) 
    𝑟𝑡 𝑟𝑡+1 𝑟𝑡+2 𝑹𝑡+2 𝐷𝑡+2(𝑔) 

Note: This table represents the relationship among returns, subsample returns, cumulative distributions, and violation 

ratios for the case: 𝑛 = 3  and 𝑘 = 2 . At time 𝑡 , we collect subsample returns 𝑹𝑡 = (𝑟𝑡−2, 𝑟𝑡−1, 𝑟𝑡)  and 𝑹𝑡−2 =
(𝑟𝑡−4, 𝑟𝑡−3, 𝑟𝑡−2) , calculate their cumulative distributions 𝐷𝑡(𝑔)  and 𝐷𝑡−𝑘(𝑔) , respectively, and then calculate 

violation ratio 𝑣𝑡
𝐹(𝑡, 𝑡 − 2) through Eq. ( 1). Similarly, we can calculate 𝑣𝑡+1

𝐹 (𝑡 + 1, 𝑡 − 1) [𝑣𝑡+2
𝐹 (𝑡 + 2, 𝑡)] at time 

𝑡 + 1 [𝑡 + 2]  through 𝑹𝑡+1 = (𝑟𝑡−1, 𝑟𝑡 , 𝑟𝑡+1) and 𝑹𝑡−1 = (𝑟𝑡−3, 𝑟𝑡−2, 𝑟𝑡−1)  [ 𝑹𝑡+2 = (𝑟𝑡 , 𝑟𝑡+1, 𝑟𝑡+2)  and 𝑹𝑡 =
(𝑟𝑡−2, 𝑟𝑡−1, 𝑟𝑡)].  
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Table 2: Descriptive statistics of 5-min BTC returns and federal funds effective rates 

 BTC returns AAA Federal funds effective rates 

Average return 4.71 × 10−6  1.77 × 10−7 

Standard deviation 2.41 × 10−3  1.66 × 10−7 

Skewness coefficient 6.04 × 10−1  7.21 × 10−1 

Kurtosis coefficient 1.34 × 102  −6.05 × 101 

Minimum −1.02 × 10−1  3.81 × 10−9 

Maximum 1.84 × 101   5.07 × 10−7 

Sample size 631,008  631,008 

Note: This table reports the descriptive statistics of 5-min BTC returns and federal funds effective 

rates, including average return, standard deviation, skewness coefficient, kurtosis coefficient, 

minimum value, maximum value, and sample size.  
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Table 3: Periodic strategy performance 

Panel A: 𝑛 =8640 (30 days) AA Panel B: 𝑛 =17280 (60 days) 

               

Daily  Daily 

Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹)  Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹) 

BH 0.0012  (4) 0.0380  (5) 0.0314  (4)  BH 0.0012  (3) 0.0380  (5) 0.0314  (3) 

FSD -0.0003  (1) 0.0307  (1) -0.0090  (1)  FSD 0.0007  (1) 0.0299  (1) 0.0226  (2) 

AFSD (0.06) -0.0001  (2) 0.0375  (4) -0.0028  (2)  AFSD (0.06) 0.0013  (4) 0.0368  (2) 0.0365  (4) 

SSD 0.0011  (3) 0.0369  (2) 0.0298  (3)  SSD 0.0008  (2) 0.0372  (4) 0.0210  (1) 

ASSD (0.06) 0.0015  (5) 0.0371  (3) 0.0406  (5)  ASSD (0.06) 0.0019  (5) 0.0370  (3) 0.0501  (5) 

               

Weekly  Weekly 

Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹)  Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹) 

BH 0.0081  (4) 0.0974  (5) 0.0834  (4)  BH 0.0081  (3) 0.0974  (5) 0.0834  (3) 

FSD -0.0020  (1) 0.0801  (1) -0.0250  (1)  FSD 0.0046  (1) 0.0761  (1) 0.0600  (2) 

AFSD (0.06) -0.0009  (2) 0.0973  (4) -0.0096  (2)  AFSD (0.06) 0.0085  (4) 0.0887  (2) 0.0963  (4) 

SSD 0.0070  (3) 0.0901  (2) 0.0774  (3)  SSD 0.0050  (2) 0.0933  (3) 0.0536  (1) 

ASSD (0.06) 0.0099  (5) 0.0913  (3) 0.1088  (5)  ASSD (0.06) 0.0126  (5) 0.0938  (4) 0.1346  (5) 

               

Monthly  Monthly 

Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹)  Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹) 

BH 0.0365  (4) 0.2153  (5) 0.1698  (4)  BH 0.0365  (4) 0.2153  (5) 0.1698  (3) 

FSD -0.0075  (1) 0.1713  (1) -0.0437  (1)  FSD 0.0207  (1) 0.1701  (1) 0.1218  (2) 

AFSD (0.06) -0.0045  (2) 0.1997  (4) -0.0227  (2)  AFSD (0.06) 0.0360  (3) 0.1794  (2) 0.2006  (4) 

SSD 0.0285  (3) 0.1825  (3) 0.1564  (3)  SSD 0.0209  (2) 0.1867  (3) 0.1118  (1) 

ASSD (0.06) 0.0405  (5) 0.1776  (2) 0.2283  (5)  ASSD (0.06) 0.0548  (5) 0.1985  (4) 0.2761  (5) 

               

Quarterly  Quarterly 

Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹)  Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹) 

BH 0.1655  (5) 0.5973  (5) 0.2771  (4)  BH 0.1655  (4) 0.5973  (5) 0.2771  (3) 

FSD 0.0104  (1) 0.4751  (3) 0.0220  (1)  FSD 0.0819  (2) 0.4183  (2) 0.1958  (1) 

AFSD (0.06) 0.0392  (2) 0.5355  (4) 0.0733  (2)  AFSD (0.06) 0.1306  (3) 0.4308  (4) 0.3032  (4) 

SSD 0.0992  (3) 0.4125  (2) 0.2406  (3)  SSD 0.0702  (1) 0.3521  (1) 0.1994  (2) 

ASSD (0.06) 0.1431  (4) 0.3825  (1) 0.3741  (5)  ASSD (0.06) 0.1845  (5) 0.4246  (3) 0.4345  (5) 

               

Yearly  Yearly 

Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹)  Strategy 𝐴𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹) 𝑆𝑅(𝑷𝑬𝑹) 

BH 0.7676  (4) 1.4064  (4) 0.5458  (4)  BH 0.7676  (5) 1.4064  (5) 0.5458  (4) 

FSD -0.1500  (1) 0.3686  (1) -0.4070  (1)  FSD 0.4196  (2) 1.3153  (3) 0.3190  (2) 

AFSD (0.06) -0.0515  (2) 0.6994  (2) -0.0736  (2)  AFSD (0.06) 0.6309  (3) 1.2408  (2) 0.5085  (3) 

SSD 0.4932  (3) 1.2025  (3) 0.4101  (3)  SSD 0.3998  (1) 1.3586  (4) 0.2943  (1) 

ASSD (0.06) 0.8373  (5) 1.4218  (5) 0.5889  (5)  ASSD (0.06) 0.6623  (4) 0.6145  (1) 1.0778  (5) 
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Note: This table reports the average values, standard deviations, and Sharpe ratios of the periodic excess returns among 

buy-and-hold (BH) strategy, FSD strategy, AFSD (0.06) strategy, SSD strategy, and ASSD (0.06) strategy across daily, 

weekly, monthly, quarterly, yearly frequencies. The numbers in parentheses represent ascending order for estimations.. 

Panel A (B) reports the results for the window size of subsample return vector 𝑛 =8640 (17280). 𝑇 represents the total 

evaluation period (from January 1, 2018, 00:00:00 to December 1, 2023, 23:55:00) and is divided into 𝐽 sub-periods. 

The 𝑗th sub-period consists of 𝑇𝑗 time points, and thus 𝑇 = ∑ 𝑇𝑗
𝐽
𝑗=1 . The sub-periods of one day, one week, one month, 

one quarter, or one year are considered. The periodic excess return for the 𝑗th sub-period is calculated as 𝑃𝐸𝑅𝑗 =

∏ (1 + 𝐸𝑅𝑖)
𝑇𝑗

𝑖=1
− 1, and the average value, standard deviation, and Sharpe ratio of 𝑷𝑬𝑹 = {𝑃𝐸𝑅𝑗 | 𝑗 = 1, 2, 3, … , 𝐽} 

are calculated by 𝐸𝑉(𝑷𝑬𝑹) = ∑ 𝑃𝐸𝑅𝑗
𝐽
𝑗=1 𝐽⁄  , 𝑆𝐷(𝑷𝑬𝑹) = (∑ (𝑃𝐸𝑅𝑗 − 𝐸𝑉(𝑷𝑬𝑹))

2
𝐽
𝑗=1 (𝐽 − 1⁄ ))

1/2

 , and 

𝑆𝑅(𝑷𝑬𝑹) = 𝐸𝑉(𝑷𝑬𝑹) 𝑆𝐷(𝑷𝑬𝑹)⁄ . 
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Table 4: Periods of bull and bear markets 

Period Market 

2018-01-01 00:00:00 / 2019-01-31 00:23:55 Bear 

2019-02-01 00:00:00 / 2019-07-31 00:23:55 Bull 

2019-08-01 00:00:00 / 2019-12-31 00:23:55 Bear 

2020-01-01 00:00:00 / 2020-02-29 00:23:55 Bull 

2020-03-01 00:00:00 / 2020-03-31 00:23:55 Bear 

2020-04-01 00:00:00 / 2021-04-30 00:23:55 Bull 

2021-05-01 00:00:00 / 2021-07-31 00:23:55 Bear 

2021-08-01 00:00:00 / 2021-11-30 00:23:55 Bull 

2021-12-01 00:00:00 / 2022-12-31 00:23:55 Bear 

2023-01-01 00:00:00 / 2023-12-31 23:55:00 Bull 
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Table 5: Strategy performances across bull and bear markets 

Panel A: 𝑛 =8640 (30 days) AAAA Panel B: 𝑛 =17280 (60 days) 

                             

Bull market  Bull market 

Strategy 𝐴𝑉(𝑨𝑬𝑹) 𝑆𝐷(𝑨𝑬𝑹) 𝑆𝑅(𝑨𝑬𝑹)  Strategy 𝐴𝑉(𝑨𝑬𝑹) 𝑆𝐷(𝑨𝑬𝑹) 𝑆𝑅(𝑨𝑬𝑹) 

BH 3.7645  (5) 2.8129  (4) 1.3383  (5)  BH 3.7645  (5) 2.8129  (4) 1.3383  (5) 

FSD -0.2222  (1) 0.9182  (2) -0.2420  (1)  FSD 1.3570  (3) 1.7810  (3) 0.7619  (4) 

AFSD (0.06) 1.8099  (4) 4.2218  (5) 0.4287  (3)  AFSD (0.06) 2.3005  (4) 3.9905  (5) 0.5765  (2) 

SSD -0.0556  (2) 0.7001  (1) -0.0794  (2)  SSD -0.3504  (1) 0.4521  (1) -0.7751  (1) 

ASSD (0.06) 1.1454  (3) 2.0506  (3) 0.5586  (4)  ASSD (0.06) 0.4312  (2) 0.6777  (2) 0.6363  (3) 

               

Bear market  Bear market 

Strategy 𝐴𝑉(𝑨𝑬𝑹) 𝑆𝐷(𝑨𝑬𝑹) 𝑆𝑅(𝑨𝑬𝑹)  Strategy 𝐴𝑉(𝑨𝑬𝑹) 𝑆𝐷(𝑨𝑬𝑹) 𝑆𝑅(𝑨𝑬𝑹) 

BH -0.7312  (1) 0.1516  (1) -4.8223  (1)  BH -0.7312  (1) 0.1516  (1) -4.8223  (1) 

FSD -0.0755  (3) 0.5431  (3) -0.1390  (3)  FSD -0.1715  (2) 0.6579  (2) -0.2606  (2) 

AFSD (0.06) -0.5206  (2) 0.2159  (2) -2.4114  (2)  AFSD (0.06) 0.3405  (3) 0.7450  (3) 0.4570  (3) 

SSD 0.7153  (4) 1.3250  (4) 0.5398  (4)  SSD 1.2671  (5) 1.9709  (5) 0.6429  (4) 

ASSD (0.06) 2.5268  (5) 3.5301  (5) 0.7158  (5)  ASSD (0.06) 1.2069  (4) 0.9108  (4) 1.3251  (5) 

                              

Note: This table reports the average values, standard deviations, and Sharpe ratios of the excess returns among buy-and-

hold (BH) strategy, FSD strategy, AFSD (0.06) strategy, SSD strategy, and ASSD (0.06) strategy in bull and bear markets. 

The numbers in parentheses represent ascending order for estimations. Panel A (B) reports the results for the window 

size of subsample return vector 𝑛 =8640 (17280). 𝑇  represents the total evaluation period (from January 1, 2018, 

00:00:00 to December 1, 2023, 23:55:00). 𝐽𝐵𝑢𝑙𝑙 (𝐽𝐵𝑒𝑎𝑟) denotes the numbers of the bull (bear) market periods, and 

 𝑇𝑗
𝐵𝑢𝑙𝑙  (𝑇𝑗

𝐵𝑒𝑎𝑟) denotes the numbers of 5-min excess returns generated by each strategy in 𝑗th bull (bear) market periods. 

Thus, 𝑇 = ∑ 𝑇𝑗
𝐵𝑢𝑙𝑙𝐽𝐵𝑢𝑙𝑙

𝑗=1 + ∑ 𝑇𝑗
𝐵𝑒𝑎𝑟𝐽𝐵𝑒𝑎𝑟

𝑗=1 . Let 𝑀 ∈ {𝐵𝑢𝑙𝑙, 𝐵𝑒𝑎𝑟}, and 𝑗th period excess return in bull or bear market is 

calculated as 𝑃𝐸𝑅𝑗 = ∏ (1 + 𝐸𝑅𝑖)
𝑇𝑗

𝑀

𝑖=1
− 1. The annualized period excess return for 𝑃𝐸𝑅𝑗  is calculated as 𝐴𝐸𝑅𝑗 =

(1 + 𝑃𝐸𝑅𝑗 )
1/𝑌𝑗

𝑀

− 1, where 𝑌𝑗
𝑀 is the corresponding number of year for 𝑗th bull or bear market periods. The average 

value, standard deviation, and Sharpe ratio of 𝑨𝑬𝑹 = {𝐴𝐸𝑅𝑗 | 𝑗 = 1, 2, 3, … , 𝐽𝑀}  are calculated by 𝐸𝑉(𝑨𝑬𝑹) =

∑ 𝐴𝐸𝑅𝑗
𝐽𝑀

𝑗=1 𝐽𝑀⁄ , 𝑆𝐷(𝑬𝑹) = (∑ (𝐴𝐸𝑅𝑗 − 𝐸𝑉(𝑨𝑬𝑹))
2

𝐽𝑀

𝑗=1 (𝐽𝑀 − 1⁄ ))
1/2

, and 𝑆𝑅(𝑨𝑬𝑹) = 𝐸𝑉(𝑨𝑬𝑹) 𝑆𝐷(𝑨𝑬𝑹)⁄ . 
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Figures 

 
(A) Violation ratio 

 

 
(B) Position 

 

Figure 1. Violation ratio and position of ASD strategy. 

Note: This figure provides an example of determining positions 𝑃𝑡 (𝑎) through violation ratio 𝑣𝑡 (𝑡, 𝑡 − 𝑘) at time 

𝑡 given a predetermined allowance violation ratio 𝑎 and lag period 𝑘 based on ASD trading rules (i), (ii), and (iii) 

in section 2.2.1. The assumed violation ratios are shown in the top figure, while the corresponding positions are 

displayed in the bottom figure. We assume that 𝑃0 (𝑎) = 0. At 𝑡 = 1 and 2, since 𝑣1 (1, 1 − 𝑘) and 𝑣2 (2, 2 − 𝑘) 

are both smaller than 𝑎, we have 𝑃2 (𝑎) = 𝑃3 (𝑎) = 1 based on ASD trading rule (i). At 𝑡 = 3 and 4, because both 

𝑣3 (3, 3 − 𝑘)  and 𝑣4 (4, 4 − 𝑘)  are between 𝑎  and 1 − 𝑎  and 𝑃3 (𝑎) = 1 , ASD trading rule (iii) indicates that 

𝑃4 (𝑎) = 𝑃5 (𝑎) = 1. Furthermore, At 𝑡 = 5 and 6, 𝑣5 (5, 5 − 𝑘) and 𝑣6 (6, 6 − 𝑘) are both larger than 1 − 𝑎, so 

ASD trading rule (ii) generates 𝑃6 (𝑎) = 𝑃7 (𝑎) = −1. Because 𝑎 ≤ 𝑣7 (7, 7 − 𝑘) ≤ 1 − 𝑎, ASD trading rule (iii) 

generates 𝑃8 (𝑎) = −1 , and similarly, because 𝑎 ≤ 𝑣8 (8, 8 − 𝑘) ≤ 1 − 𝑎 , ASD trading rule (iii) also generates 

𝑃9 (𝑎) = −1. At 𝑡 = 9 and 10,  both  𝑣9 (9,9 − 𝑘) and 𝑣10(10, 10 − 𝑘) are smaller than 𝑎, and thus P10(a) =

P11(a) = 1 based on ASD trading rule (i). Because 𝑃11(𝑎) = 1 and both 𝑣11(11, 11 − 𝑘) and 𝑣12(12, 12 − 𝑘) are 

between 𝑎 and (1 − 𝑎), 𝑃12(𝑎) = 𝑃13(𝑎) = −1 based on ASD trading rule (iii). Final, according to ASD trading 

rule (ii), 𝑃14(𝑎) = 1 because 𝑣13(13, 13 − 𝑘) > 𝑎. 
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(A) Violation ratio 

 

 
(B) Position 

 

Figure 2. Violation ratio and position of SD strategy. 

Note: This figure provides an example of determining positions 𝑃𝑡 (𝑎) through violation ratio 𝑣𝑡 (𝑡, 𝑡 − 𝑘) at time 

𝑡 given lag period 𝑘 based on SD trading rules (i), (ii), and (iii) in section 2.2.2. The assumed violation ratios are 

shown in the top figure, while the corresponding positions are displayed in the bottom figure. We assume that 𝑃0 (0) =

0 . At 𝑡 = 1  and 2, since 𝑣1 (1, 1 − 𝑘)  and 𝑣2 (2, 2 − 𝑘)  are both equal to 0 , we have 𝑃2 (0) = 𝑃3 (0) = 1 

based on SD trading rule (i). At 𝑡 = 3  and 4, because 0 < 𝑣3 (3, 3 − 𝑘) < 1  and 0 < 𝑣4 (4, 4 − 𝑘) < 1  and 

𝑃3 (0) = 1 , SD trading rule (iii) indicates that 𝑃4 (0) = 𝑃5 (0) = 1 . Furthermore, At 𝑡 = 5  and 6, both 

𝑣5 (5, 5 − 𝑘)  and 𝑣6 (6, 6 − 𝑘)  equal 1, so SD trading rule (ii) generates 𝑃6 (0) = 𝑃7 (0) = −1 . Because 0 <

𝑣7 (7, 7 − 𝑘) < 1, SD trading rule (iii) generates 𝑃8 (0) = −1, and similarly, because 0 < 𝑣8 (8, 8 − 𝑘) < 1, SD 

trading rule (iii) also generates 𝑃9 (0) = −1. At 𝑡 = 9 and 10, both 𝑣9 (9,9 − 𝑘) and 𝑣10(10, 10 − 𝑘) equal 0, 

and thus P10(0) = P11(0) = 1  based on SD trading rule (i). Because 𝑃11(0) = 1  and 0 < 𝑣11(11, 11 − 𝑘) < 1 

and 0 < 𝑣12(12, 12 − 𝑘) < 1, 𝑃12(0) = 𝑃13(0) = −1 based on SD trading rule (iii). Final, according to SD trading 

rule (ii), 𝑃14(0) = 1 because 𝑣13(13, 13 − 𝑘) = 1. 

 

 

 


